105 research outputs found

    Target-specific glioma therapy in an immunocompetent mouse model : meeting abstract

    Get PDF
    Objective: Establishment of an immunocompetent mouse model representing the typical progressive stages observed in malignant human gliomas for the in vivo evaluation of novel target-specific regimens. Methods: Isolated clones from tumours that arose spontaneously in GFAP-v-src transgenic mice were used to develop a transplantable brain tumour model in syngeneic B6C3F1 mice. STAT3 protein was knocked down by infection of tumour cells with replication-defective lentivirus encoding STAT3-siRNA. Apoptosis is designed to be induced by soluble recombinant TRAIL + chemical Bcl-2/Bcl-xL inhibitors. Results: Striatal implantation of 105 mouse tumour cells resulted in the robust development of microscopically (2 – 3 mm) infiltrating malignant gliomas. Immunohistochemically, the gliomas displayed the astroglial marker GFAP and the oncogenic form of STAT3 (Tyr-705-phosphorylated) which is found in many malignancies including gliomas. Phosphorylated STAT3 was particularly prominent in the nucleus but was also found at the plasma membrane of peripherally infiltrating glioma cells. To evaluate the role of STAT3 in tumour progression, we stably expressed siRNA against STAT3 in several murine glioma cell lines. The effect of STAT3 depletion on proliferation, invasion and survival will be first assessed in vitro and subsequently after transplantation in vivo. Upstream and downstream components of the STAT3 signalling pathway as well as possible non-specific side effects of STAT3-siRNA expression after lentiviral infection will be examined, too. Conclusions: Its high rate of engraftment, its similarity to the malignant glioma of origin, and its rapid locally invasive growth should make this murine model useful in testing novel therapies for malignant gliomas

    Efficient chemotherapy of rat glioblastoma using Doxorubicin-loaded PLGA nanoparticles with different stabilizers

    Get PDF
    Background: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. Methodology: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA) or human serum albumin (PLGA/HSA) as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA) were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3×2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. Conclusion: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations

    Ammonium Pertechnetate in Mixtures of Trifluoromethanesulfonic Acid and Trifluoromethanesulfonic Anhydride

    Get PDF
    Ammonium pertechnetate reacts in mixtures of trifluoromethanesulfonic anhydride and trifluoromethanesulfonic acid under final formation of ammonium pentakis(trifluoromethanesulfonato)oxidotechnetate(V), (NH4)2[TcO(OTf)5]. The reaction proceeds only at exact concentrations and under the exclusion of air and moisture via pertechnetyl trifluoromethanesulfonate, [TcO3(OTf)], and intermediate TcVI species. 99Tc nuclear magnetic resonance (NMR) has been used to study the TcVII compound and electron paramagnetic resonance (EPR), 99Tc NMR and X-ray absorption near-edge structure (XANES) experiments indicate the presence of the reduced technetium species. In moist air, (NH4)2[TcO(OTf)5] slowly hydrolyses under formation of the tetrameric oxidotechnetate(V) (NH4)4[{TcO(TcO4)4}4] ⋅10 H2O. Single-crystal X-ray crystallography was used to determine the solid-state structures. Additionally, UV/Vis absorption and IR spectra as well as quantum chemical calculations confirm the identity of the species

    Nanoparticulate Transport of Oximes over an In Vitro Blood-Brain Barrier Model

    Get PDF
    Background: Due to the use of organophosphates (OP) as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE) in the peripheral and central nervous systems (CNS). This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime). However, these oximes can not cross the blood-brain barrier (BBB) sufficiently. Therefore, new strategies are needed to transport oximes over the BBB. Methodology/Principal Findings: In this study, we combined different oximes (obidoxime dichloride and two different HI 6 salts, HI 6 dichloride monohydrate and HI 6 dimethanesulfonate) with human serum albumin nanoparticles and could show an oxime transport over an in vitro BBB model. In general, the nanoparticulate transported oximes achieved a better reactivation of OP-inhibited AChE than free oximes. Conclusions/Significance: With these nanoparticles, for the first time, a tool exists that could enable a transport of oximes over the BBB. This is very important for survival after severe OP intoxication. Therefore, these nanoparticulate formulation

    Ammonium Pertechnetate in Mixtures of Trifluoromethanesulfonic Acid and Trifluoromethanesulfonic Anhydride

    Get PDF
    Ammonium pertechnetate reacts in mixtures of trifluoromethanesulfonic anhydride and trifluoromethanesulfonic acid under final formation of ammonium pentakis(trifluoromethanesulfonato)oxidotechnetate(V), (NH4_{4})2_{2} [TcO(OTf) 5_{5}]. The reaction proceeds only at exact concentrations and under the exclusion of air and moisture via pertechnetyl trifluoromethanesulfonate, [TcO3_{3}(OTf)], and intermediate TcVI^{VI} species. 99^{99}Tc nuclear magnetic resonance (NMR) has been used to study the TcVII^{VII} compound and electron paramagnetic resonance (EPR), 99^{99}Tc NMR and X-ray absorption near-edge structure (XANES) experiments indicate the presence of the reduced technetium species. In moist air, (NH4_{4})2[TcO(OTf)5] slowly hydrolyses under formation of the tetrameric oxidotechnetate(V) (NH4_{4})4_{4} [{TcO(TcO4_{4})4_{4}}4_{4}] ⋅10 H2_{2}O. Single-crystal X-ray crystallography was used to determine the solid-state structures. Additionally, UV/Vis absorption and IR spectra as well as quantum chemical calculations confirm the identity of the species

    Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    Get PDF
    Background: The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier

    PU.1 controls fibroblast polarization and tissue fibrosis

    Get PDF
    Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific
    corecore